It is assumed that an arbitrary position in the gravitational field belongs to the inertia system which has the time axis t^{\prime} with the light speed C and the radial axis R^{\prime} with the relative speed $U(R)$. The squared light speed $C^{\prime 2}$ in the gravitational field could be obtained from the coordinate transformation to the inertia system from the static system.
$(\mathrm{dS})^{2}=(\mathrm{iCdt})^{2}=\left(\mathrm{dS}^{\prime}\right)^{2}=(\mathrm{iCdt})^{2}+\left(\mathrm{U}(\mathrm{R}) \mathrm{dt}^{\prime}\right)^{2}$
dS : World space distance
d : Extremely infinitesimal change
i : Imaginary $\left(\mathrm{i}^{2}=-1\right)$
And also, since the light advance distance is invariant, the following formula is formed.

Cdt $=C^{\prime} d t^{\prime}$

Then, the following formula (1) is obtained.

$$
\begin{equation*}
C^{\prime 2}=C^{2}-U^{2} \quad U: U(R) \tag{1}
\end{equation*}
$$

V : Speed of the mass "m" in the static system
V^{\prime} : Speed of the mass "m" in the inertia system
$(\mathrm{dS})^{2}=(\mathrm{iCdt})^{2}=\left(\mathrm{dS}^{\prime}\right)^{2}=(\mathrm{iCdt})^{2}+\left(\mathrm{V}^{\prime} \mathrm{dt}^{\prime}\right)^{2}=\left(-\mathrm{C}^{2}+\mathrm{V}^{\prime 2}\right) \mathrm{dt}^{\prime 2}$
$\left(\mathrm{dS}^{\prime}\right)^{2}=(\mathrm{iCdt})^{\prime}=(\mathrm{dS})^{2}=(\mathrm{iCdt})^{2}+(\mathrm{Udt})^{2}=\left(-\mathrm{C}^{2}+\mathrm{U}^{2}\right) \mathrm{dt}^{2}{ }^{2}$

$$
\left(-C^{2}+V^{2}\right) d t^{\prime 2}=(i C d t)^{2}
$$

$$
\left(-\mathrm{C}^{2}+\mathrm{U}^{2}\right) \mathrm{dt}^{2}=\left(\mathrm{iCdt}^{\prime}\right)^{2}
$$

$$
\left(-C^{2}+U^{2}\right)\left(-C^{2}+V^{2}\right) d t^{2}=\left(-C^{2}+V^{2}\right)\left(d t^{\prime}\right)^{2}(i C)^{2}=(i C d t)^{2}(i C)^{2}
$$

$\left(C^{4} C^{2}-C^{2}\left(V^{2}+U^{2}\right)+U^{2} V^{2}\right) d t^{\prime 2}=-C^{4} d^{2}$
When V is small enough compared to C, i.e. $0<V / C \ll 1$, the following formulas are formed.
$\left(1-\left(V^{2}+U^{2}\right) / C^{2}\right) d t^{2}=\left(1-V^{\prime 2} / C^{2}\right) d t^{2}$
(2) $\quad \mathrm{V}^{\prime 2}=\mathrm{V}^{2}+\mathrm{U}^{2}$
$\mathrm{mV}^{\prime 2} / 2=\mathrm{mV}^{2} / 2+\mathrm{mU}^{2} / 2, \mathrm{~d}\left(\mathrm{mV}^{2} / 2\right) / \mathrm{dR}=0$
$\mathrm{d}\left(\mathrm{mV}^{\prime 2} / 2\right) / \mathrm{dR}=\mathrm{d}\left(\mathrm{mU}^{2} / 2\right) / \mathrm{dR}=\mathrm{F}=\mathrm{mg}\left(\mathrm{g}=\mathrm{GM} / \mathrm{R}^{2}\right)$
$\mathrm{dU}^{2} / \mathrm{dR}=2 \mathrm{GM} / \mathrm{R}^{2}$
(3) $\quad \mathrm{U}^{2}=2 \mathrm{GM} / \mathrm{R}$

In Fig.1, the mass m with the speed V vertically passes at the distance R from the gravitational field center of mass M, and then, the advance direction of the mass is rotated by the angle ω for the rotation angle θ of the distance R^{\prime} from the center.
Then, the following formula (4) is formed. (4) $\mathrm{d} \omega / \mathrm{d} \theta=2 \mathrm{GM} /\left(\mathrm{V}^{\prime 2} \mathrm{R}^{\prime}\right)$

Fig. 1

On the other hand,
v: The speed of the mass at the infinite distance

$$
\begin{aligned}
& \mathrm{V}^{2}=\mathrm{U}^{2}+\mathrm{v}^{2} \quad \mathrm{U}^{2}=2 \mathrm{GM} / \mathrm{R} \\
& \mathrm{~V}^{\prime 2}=\mathrm{U}^{\prime 2}+\mathrm{V}^{2} \quad \mathrm{U}^{\prime 2}=2 \mathrm{GM} / \mathrm{R}^{\prime} \\
& \mathrm{V}^{\prime 2}=\mathrm{V}^{2}+\mathrm{U}^{\prime 2}-\mathrm{U}^{2} \\
&=\mathrm{V}^{2}\left(1+2 \mathrm{GM}\left(1 / \mathrm{V}^{2} \mathrm{R}^{\prime}-1 / \mathrm{V}^{2} \mathrm{R}\right)\right) \\
& \mathrm{R}=\mathrm{R}^{\prime} \cos \delta, \quad \delta=\theta-\omega \\
& \mathrm{V}^{\prime 2}=\mathrm{V}^{2}\left(1+2 \mathrm{GM}\left(\left(\cos \delta / \mathrm{V}^{2} \mathrm{R}\right)-\left(1 / \mathrm{V}^{2} \mathrm{R}\right)\right)\right. \\
& 2 \mathrm{GM} / \mathrm{V}^{2} \mathrm{RV}=1 \quad \mathrm{R}=\gamma \mathrm{Rv} \\
&=\mathrm{V}^{2}(1+(\cos \delta-1) / \gamma)
\end{aligned}
$$

Fig. 2

The above formula (4) is rewritten as the following.
(5) $\mathrm{d} \delta / \mathrm{d} \theta=(\gamma-1) /(\gamma+\cos \delta-1)$

$$
2 \mathrm{GM} / \mathrm{V}^{2} \mathrm{Rv}=1 \quad \mathrm{R}=\gamma \mathrm{Rv}
$$

When $\gamma>1, \mathrm{~d} \delta / \mathrm{d} \theta>0$ and then the orbit is parabolic.
When $\gamma=1$, the orbit is circular.
When $0<1-\gamma \ll 1$, the following formulas are formed.

$$
R^{\prime}=R \cos \delta^{\prime}, \quad \delta^{\prime}=\omega-\theta
$$

$$
\mathrm{V}^{\prime 2}=\mathrm{V}^{2}\left(1+2 \mathrm{GM}\left(\left(1 / \mathrm{V}^{2} \mathrm{R} \cos \delta\right)-\left(1 / \mathrm{V}^{2} \mathrm{R}\right)\right)\right.
$$

$$
2 \mathrm{GM} / \mathrm{V}^{2} \mathrm{Rv}=1 \quad \mathrm{R}=\gamma \mathrm{Rv}
$$

$$
V^{\prime 2}=V^{2}(1+1 / \gamma \cos \delta-1 / \gamma)
$$

$$
\mathrm{d} \omega / \mathrm{d} \theta=2 \mathrm{GM} /\left(\mathrm{V}^{\prime 2} \mathrm{R}^{\prime}\right)=2 \mathrm{GM} /\left(\mathrm{V}^{2}(1+1 / \gamma \cos \delta-1 / \gamma) \gamma \mathrm{Rv} \cos \delta\right)
$$

$$
=1 /((\gamma-1) \cos \delta+1)
$$

(6) $\mathrm{d} \delta / \mathrm{d} \theta=1-\mathrm{d} \omega / \mathrm{d} \theta=(\gamma-1) \cos \delta /((\gamma-1) \cos \delta+1)$

The apsidal precession of the elliptic orbit is calculated as the following.

$$
\mathrm{d} \delta / \mathrm{d} \theta \cong(\gamma-1)
$$

$$
\begin{aligned}
& \delta_{2 \pi}: \text { Apsidal precession by one around }(\theta=0 \sim 2 \pi) \\
\delta_{2 \pi}= & \int_{0}^{2 \pi}(\gamma-1) d \theta=2 \pi(\gamma-1)<0
\end{aligned}
$$

